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S I M P L E  W A V E S  O N  A S H E A R  G A S  F L O W  

IN A C H A N N E L  OF C O N S T A N T  CROSS S E C T I O N  

B. N.  Elemesova UDC 533.6.011,517.958 

The plane-parallel unsteady-state shear gas flow in a narrow channel of constant cross section 
is considered. The existence theorem of solutions in the form of simple waves of  a set of  
equations of  motion is proved for a class of isentropic flows with a monotone velocity profile 
o v e r  the channel depth. The exact solution described by incomplete beta-functions is found for  
a polytropic equation of  state in a class of  isentropic flows. 

I n t r o d u c t i o n .  An approximate integrodifferential system of equations of nonstationary flows of an 
inviscid heat-nonconducting gas in an elongated channel of variable cross section was derived by Teshukov [1]. 
Based on the generalized determination of the characteristics and the notion of hyperbolicity for systems with 
operator functionals [2, 3], Teshukov [1] obtained hyperbolicity conditions for a system of equations of motion 
and constructed a class of stationary solutions which describe inhomogeneous transonic flows in a channel of 
variable cross section. 

Exact solutions of a system of equations of long waves propagating in a layer of incompressible vortex 
fluid were found by Freeman [4] and Blythe et al. [5]. Teshukov [6] and the author [7] showed the existence of 
simple waves and analyzed their common properties which correspond to particular values of the characteristic 
spectrum in a free-boundary fluid layer. 

1. Fo rmula t ion  of t h e  P r o b l e m .  We consider the initial boundary-value problem 

u T -1- uux  -I- vuy  -]- p - l p x  ---- O, p - l p y  = O, PT -t- upx  Jr" vpy q- p(ux  "t- vy) = O, 

ST + u s x  + vsy  = O, u (X ,O,Y)  = uo (X ,Y ) ,  v (X ,O ,Y )  = vo(X ,Y) ,  
(i.i) 

s (X ,O,Y)  = so (X ,Y ) ,  p(X,O,Y)  = po(X ,Y) ,  p = p(p,s), 0 <<. Y < Ao(X), 

X E R, T E R +, v ( X , T , O ) =  O, v ( X , T ,  A o ( X ) ) =  u ( X , T ,  Ao(X))A~o(X), 

which describes the plane-parallel vortex gas flow in a channel 0 ~ Y ~ Ao(X) in a long-wave approximation. 
Here u and v are the velocity-vector components, p is the pressure, p is the density, and s is the entropy. 
Hereafter, the specific volume p-I  is denoted by r and it is assumed that the equation of state of the gas 
p(r, s) satisfies the conditions 

Pr <0,  Pry>O, p~ > O, p--* O as p - *  O. (1.2) 

The long-wave approximation arises if one takes into account that H0 << L0, where H0 and L0 are the 
characteristic depth and length of the channel. It follows from the second equation of (1.1) that the pressure 
does not depend on the vertical coordinate Y: p = p(X, T). This means that the pressure equalizes instantly 
across the channel in the long-wave approximation. 

We introduce the mixed Eulerian-Lagrangian independent variables x, t, and X [X = x, T = t, 
Y = O(x,t ,X),  0 ~< X < 1, O(x,t,0) = 0, and O(x,t, 1) = A0(x)] [i] and the new desired function 
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H(x,I ,  A) = p(x, t, ~ ) ~ ( x ,  t, ~). According to [1], problem (1.1) is reduced to the Cauchy problem for the 
functions u(x, t, ,~), H(z ,  t, )~), and s(z,  t, ~): 

1 

ut + uuz q- (pcr) -1 f (Hzp -I - Hpsszp -2) dA = A~(x)(o-p) -1, Ht + (uH)z = O, st + usz : O, 
0 

u(x, O, )~) = uo(z, ,~), H(x,  0, ,~) = H0(x, ~), s(z, O, )~) = so(x, ~), (1.3) 

p=p(p(x , t ) , s (x , t , )~) ) ,  0<~ ~<~ 1, --oo<~z~< +c~, t > 0 ,  

1 

where a = fHp-=c -s d)~ and c s is the squared sound velocity (c s = p~). Here the nonlocal dependence of p 
0 

on s and H in (1.3) is set by the equation 

1 

J H(x , t , )O(p(p(z , t ) , s (x , t , )O))  -1 d)~ = ao(x). (1.4) 
0 

In accordance with the known solution (1.3), the replacement function r  and the vertical 
component  of the velocity vector v are determined by the relations 

~(z , t , ,~)  = / H ( z , t , v ) ( p ( p ( z , t ) , s ( z , t , v ) ) )  -1 dr, v = Ot + uOx. 
0 

According to [1], system (1.3) has the characteristics dx/dt  = ki(x, t) ,  which correspond to the 
discrete spectrum,  and the  characteristics dz/dt  = u(x, t,)~) (~ = coast) of the  continuous spectrum of 
the  characteristic velocities. The  characteristic roots of the discrete spect rum are determined by the equation 

1 
: / Hp-S(~ - -  k i )  - 2  d~, (1.5) o" 

0 

which has only two real roots-kl  and ks outside the range of variation of the function u(x, t, ,~) such that  
kl < m i n u ( x , t ,  ),) and ks > m a x u ( z , t ,  ,k) for any values of the variables z and t. 

We consider a channel of constant c r o s s  section Ao(z) = A0 = c o n s t .  We note that  system (1.3) admits 
exact solutions of the form 

P = po = c o n s t ,  u = u(,~), H = H(~),  s = s(A); (1.6) 

u = u(rl(x,t),,~), H = g(rl(x , t ) ,A) ,  s = s(r/(x,t),  ~), (1.7) 

where r/(z, t) is a certain function of the variables x and t. In initial variables, solution (1.6) describes a 
steady-state shear flow u = u(Y),  v = 0, p = p0 = coast, and s = s(Y),  and (1.7) gives the solution 
u = u(r/(X, T), Y), v = r/xv(r/(X , T), Y), and s = s(r/(X, T), Y), which we call a simple wave. In what follows, 
we use the function of pressure distr ibution ~/(z, t) as the simple-wave parameter  p(x, t). 

Here we consider simple waves which satisfy the following condition for all ~: 

= # u(x,  t, (1.s) 
By virtue of (1.8), the simple waves are described by the equations 

up = - (p(p ,s (p ,  )~)))-l(u - k) -1, n p =  n(p(p , s (p ,~ ) ) ) - l (u  - k) -s ,  sp = 0. (1.9) 

Having divided the second equation of (1.9) by p and integrated it over ~ from 0 to 1, according to (1.4) we 
obtain that  k should satisfy the characteristic equation (1.5). For definiteness, we analyze simple waves which 
correspond to the root ks [ks > max u(z , t ,~ ) ]  of Eq. (1.5) (the case k = k I is considered similarly). It is 
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convenient to derive a differential equation for k by differentiating (1.5): 

1 1 1 

(1.10) 
0 0 0 

For system (1.9), (1.10), it is natural  to pose the Cauchy problem with da ta  for p = p0 (p0 = const): 

~(p0, A) = ~0(A), H(p0, A) = H0(A), ,(p0, A) = s0(A), k(p0) = k0. (1.11) 

Here k0 is the large root of Eq. (1.5) [k0 > maxu0(A)] for u = u0(A), n = H0(A), and s = s0(A). 
According to solution (1.9), (1.10), the pressure p is found by integration of (1.8). It follows from 

(1.8) that  the pressure p is constant  along the characteristics dz/dt  = k2 of sys tem (1.3). Thus,  the range 
of definition of a simple wave is covered with the one-parameter  family of planes p = const, and problem 
(1.9)-(1.11) is the  problem of contiguity of a simple wave-type continuous solution to the  specified shear flow 
with respect to a certain characteristic which corresponds to p = p0 (p0 is the constant  pressure in the shear 
flow). 

2. E x i s t e n c e  o f  S i m p l e  W a v e s .  Proving the existence of simple waves, we rely on the existence 
theorem of a solution of the Cauchy problem for a nonlinear equat ion in the Banach space B: 

dz 
d-7 = f (~ , t ) ,  x(t0) = ~0. (2.1) 

Here f (x ,  t) is the  function of real argument  t and variable x E B which takes on the values in B. 
Let the  function f ( z ,  t) be continuous with respect to t and satisfy the conditions IIf(x, t)ll ~ M1 and 

Ill(x1, t ) -  f (xu,  t)ll -< Mulls, -~211 for t e [a, b] and IIx -~011 -< 0. According to [8], there is 61 > 0 such that  
the Cauchy problem (2.1) has a unique solution x = ~o(t) which is left in the sphere II~,(t) - x011 -< 0 on the 
interval 61 = rrfin( O M~ 1, M~  I ). 

To use this result, we consider the Banach space B of the vector functions U = (u, H, s, k) of real 
argument  A (5 [0, 1] 

13 = { ( u , H , s , k ) / u  (5 01[0, 1], H E C[O, 1], s E 01[0, I], k (5 R} 

with the norm IIUII = maxluxl + 'maxlu l  + maxlsal  + max Isl + max IHI + Ikl, where C1[0, 1] is the set of 
continuously differentiable functions on the segment [0, 1], C[0, 1] is the set of continuous functions, and R is 
the numerical straight line. 

Let Uo = (uo, Ho, so, ko) (5 B. Since uo and Ho are continuous in the closed gap [0, 1] and uo - ko < 0 
and Ho > 0, there is a constant  0 > 0 such tha t  [uo - kol/> rain luo(A) - k01 > 0 and minHo > 0. We consider 
a sphere IIU - u011 < 0/2 in the space B. For U from the sphere, the following inequalities are fulfilled: 

lu - kl t> lu0 - k01-  IIV - U011 >/0/2,  minlHI > / m i n l H 0 1 -  IIU - U011/> 0/2. (2.2) 

By virtue of the continuity of the operator f ( U ,  p), there are constant  MI(O, U0) and Ms (0, U0) in the region 
(2.2) for which the inequalities 

IIf(U,p)ll <- M1, I I f (Ul ,p)  - f ( U z , p ) l ]  ~< M211Uz -O111 (2.3) 

hold true. Using the above result, we establish the fact of the existence and uniqueness of the solution of 
problem (1.9)-(1.11) on the interval [p0 - 61,p0 + 61] in B. 

For isentropic flows, for s0(A) = so = const we prove the existence theorem of a solution of problem 
(1.9)-(1.11) as a whole with the use of the ampli tude of the simple wave p. We consider the monotone velocity 
profile u0x >/0. It follows from (1.9) that  (uxH-1)p = 0. Then  the relation 

uxH -1 = uoxHo I (2.4) 

is the integral of system (1.9), (1.10). By virtue of (2.4), we have ux > 0 in the range of definition of a simple 
wave. In addition, the characteristic equation (1.5) is the integral of Eqs. (1.9) and (1.10) by construction. 
The use of the integrals of sys tem (1.9), (1.10) allows one to es t imate  the solution a priori. 
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and the inequality w = uoa Ho 1 <~ Lemma.  Let u, H,  and k be the solution of problem ( 1 . 9 ) - ( 1 . 1 1 )  

w2 < cx~, where w2 = maxw(~) ,  be satisfied. Then the estimates 

c 2 
<<. [u - k I <~ Aow2p + c, (2.5) 

c + w2pAo 

where c = k/-~o is the velocity of sound, are valid. 
P r o o f .  We introduce u2 = max u(p(z, t), )0 and ux = min u(p(x, t), )0. It follows from the characteristic 

A 
equation (1.5) that 

1 

Aop-lc  -2 = a = f Hp-2(u - -  k) -2 d,~ <~ Aop-l(u2 - -  k) -2, 

o 
1 

A o p - %  -2 = a = f Hp- (u - k)-' >. A o p - l ( u l  - k) -2. 
o 

Whence 

In2 - k I ~ c,  lu l  - k I ~ c. (2.6) 

From (1.5), we obtain 

1 

Aop- l c  -2 p-2~o21 /u)~(u -- k) -2 d~ = p-2w~l ( - (u2  - k) -1 -}- (Ul - k ) - l ) .  (2.7) 

0 

By virtue of (2.6), the estimate from below follows from (2.7): lu2 - kl /> c2(c + A0o:2p) -1. From (1.4), w e  

obtain 
1 

Ao = p-1 f u.;1sux >. u0. (2.S) 
0 

Since lul - k I < u2 - ul  + lu2 - kl, the upper  est imate follows from (2.6) and (2.8): lUl - k I <~ Aow2p + c. 
The inequalities (2.5) follow from the inequalities lu2 - k I <~ lu - k I ~< lux - k I. The  lemma is proved. 

T h e o r e m .  Let u and H satisfy the conditions of the lemma. Then the solution of problem (1.9)-(1.11) 
exists on any finite interval p E [r L], where 6 > 0 and L < c~ and belongs to the space B. 

P r o o f .  For U = (u, H, k) e B and p e [6, L], by virtue of (2.5) the inequalities 

c2(6)(c(L) + w2p( L)Ao) -1 <~ lu - k I <~ Aow2p( L) + c( L) (2.9) 

hold true. Differentiating the first equation of (1.9) with respect to ~ and integrating over p, we obtain 
p 

u),(p, )~) = uo)~ exp ( / p - l (u  - k)-2 dp) . (2.10) 

p0 

The integration of the second equation in (1.9) yields 
p 

po 

According to (2.9)-(2.11), conditions (2.2) are satisfied with the same constants M1 and M2, which depend 
only on 6, L, and IIU011. Therefore, after the solution is constructed on the interval [/90 - ~l,p0 + ~1], it can 
be extended uniquely over the entire interval [6, L]. The  theorem is proved. 

The construction of the simple wave is completed by solving the equation 

Pt q- k(p)pz = 0, p(x, O) = pm(X). (2.12) 
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According to the known facts of the theory of quasilinear equations [9], the properties of solutions (2.12) 
depend on whether  the derivative k'(p) is of fixed sign or not. It follows from Eq. (2.12) that  

p x(x) 
Pz = 1 + tk'(p,~)p,n~ (2.13) 

along the characteristics dx/dt  = k(p). It follows from (2.13) tha t  if k'(p,n)pmz > 0, the derivative Pz remains 
bounded (Ipxl <~ 1) and the solution of Eq. (2.12) exists for any t > 0. If k'(pm)pmz < 0 for certain x, the 
solution of (2.12) exists only for finite t > 0. 

We examine the sign of the function k~(p). We note tha t  the  numerator  of the  r ight-hand side of Eq. 
(1.10) coincides with the form of the  second derivative K"(p) of the functions K(p),  which serves to determine 
the pressure p in construct ing steady-state solutions in [1]. Here the function f from [1] corresponds to the 
functions H. The  condition K'(pc) = 0 from [1] is equivalent to the characteristic equation (1.5), and the 
condition K"(pe) >1 0 to the condition k'(p) >>. O. As is shown in [1], if the equat ion of s tate has the form 

7" = B(s)qa(p), ~' < 0, qa" > 0, (2.14) 

we have k'(p) >10. Generally, the  condition k'(p) > 0 is not a consequence of conditions (1.2); however, if one 
requires that  the function of the  equation of state r = r(p,  s) satisfy the additional condition 

4rrp, - > 0, (2.15) 

we have kl(p) > 0 for any p. 
We call the simple wave a compression (rarefaction) wave if the inequality 

p, + t, = (uCx, t, - k)p  > o (<  o) 

is satisfied for any A (0 ~< ,~ ~< 1). 
According to the equations of gas dynamics,  we call the simple wave a centered wave if all characteristics 

dx/dt  = k(p) converge at one point.  
It follows from (2.13) tha t  the gradient catastrophe will occur in a simple compression wave for k~(p) > 

0, and simple rarefaction waves can exist for any t > 0. If kt(p) < 0, simple compression waves can exist 
for any t > 0, and rarefaction waves only for finite t > 0. Centered at the initial moment ,  simple waves are 
rarefaction waves for k'(p) > 0 and compression waves for kt(p) < O. 

The equation of s tate of a gas with constant entropy is a particular case of (2.14). Hence, k'(p) are 
always greater than zero for isentropic flows, and simple waves defined for all t > 0 are the rarefaction waves 
and the simple compression waves collapse. Centered at t = 0, simple waves for t > 0 are the rarefaction 
w a v e s .  

We ment ion an analogy. The  behavior of a simple wave-type solution of the  equations of one-dimensional 
gas dynamics is determined by the sign of the quanti ty 9rr, where p = g(r ,  s) is the equation of state of a gas. 
In studying the simple waves of system (1.3), this role is played by the sign of the derivative k'(p). Therefore, 
one can regard condition (2.15), which guarantees that  k'(p) > 0, as an analog of the condition of convexity 
of the equation of state: grr  > 0. 

Thus, a simple isentropic rarefaction wave exists for any t > 0. Generally, simple rarefaction and 
compression waves can exist, depending on the initial equation of state. The  behavior of the solution is 
determined by the sign of the derivative k'(p), and the properties of simple waves, when k'(p) changes sign, 
are similar to the properties of simple waves in a gas with anomalous thermodynamic  properties. 

3. E x a c t  S o l u t i o n s .  We consider the problem of construction of a simple wave (1.9), (1.10) for a 
med ium with a polytropic equat ion of s tate p = B0p fl, where 0 < fl < 1, and constant  entropy B0 = const. 
We denote c~ = fl/(1 - fl) and introduce the new variable ~ = pl-f l / (1  - fl). Equations (1.9) and relation (1.4) 
can be rewritten in the form 

1 

u~ = - (Bo(u  - k ) ) - ' ,  H~ = H B o l ( u  - k) -2, j H d t  = BoA0(1 - f l )"(" .  (3.1) 
0 
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System (3.1) admits a one-parameter group of extensions ~ --, l(, )~ --. )~, u ---, v~u, k --* vqk, and 
H ---, l'~H, where l is a parameter of the group. We construct a solution of system (3.1) which is invariant 
relative to this group. We note also that the ratio 

1 ~ y 

y =  / H d A / / H  dA = / H d A / B o A o ( 1 -  ' ) ~  = A-'o 
0 0 0 

is the invariant of the group. According to the known algorithm of searching for invariant solutions, we assume 

that  

u = v~U(Y),  k =  V/'~A (A = coast). (3.2) 

Substi tut ing (3.2) into the first equation of (3.1), we obtain an equation to define the function U(y): 

U/2 + (~ - v~y)V' + (Bo(V - A)) -1 = 0, (3.3) 

where 
Y 

r  = / Bo l (U  - A) -2 dy. (3.4) 

0 

By virtue of (1.5) and (3.4), the functions ~(y)  satisfy the boundary  conditions ~(0) = 0 and r  = a. 
Excluding U(y) from (3.3) and using (3.4), we obtain the following equation for r  

-(~ - a y ) ~ "  + 2~ ~2 + A ~ o r  ~3/2 + (~' = O. 

We introduce the function r = r - ay.  Then r  should satisfy the equation 

- r 1 6 2  + 2(r  + a)  2 + Ak/~0(r  + ct) 312 + r + ct = 0 (3.5) 

and the boundary conditions r  = ~b(1) = 0. After the replacements r  = L( r  and N 2 = L + er, Eq. (3.5) 
is integrated similarly [4]: 

~b -- C(a - N) l-(2a-l)b(a-b)-I ( N - b) l+(2a-1)a(a-b)-' 
N2 a (3.6) 

Here a and b are the roots of the square equation N 2 + A B o / 2 N  + 1/2 = 0 (a > b) and C is an arbitrary 
constant. We consider that  4D = A2Bo - 8 > 0. The boundary conditions for the function r are satisfied at 
the points N = a and N = b provided that 

1 - (2a - 1)b/(a - b) > 0, 1 A- (2a - t )a/(a - b) > 0. (3.7) 
/ ! 

Let y = 0 correspond to N = a, and y = 1 to N = b. Since L = r = CNN~, from (3.6) we obtain 

Y~N = - C ( a  - N) -(2a-Db('-b)-I ( N - b)(2'~-Da(a-b)-l /N2a+l. (3.8) 

Since N 2 = ~b' + a = Bol (U - A) -2, the quanti ty (U - A) -1 varies from v / ~ a  for y = 0 to v/-B~b for y = 1. 
Integrating Eq. (3.8), we obtain a relation which connects the horizontal velocity U and the coordinate Y: 

(a-b)-I (abv~(U_A)_b) 
/ Z -(2ct-1)b(a-b)-I ( 1  - -  Z) (2~ dz 

Y o (3.9) 
Ao t 

Z (2ct-1)b(a-b)-I (1 - z) (2~-l)a("-b)-I dz 

0 
According to (3.2), formula (3.9) determines the velocity profile in a simple wave u = u(p(z, t), Y). 

The velo~:ity varies from u = Ul = (x/- f-Z~)-lp(l-~)/2(A + ( x / ~ a )  -1) at the lower wall Y = 0 to u = u.2 = 
(x/]--/Z~)-tp(l-~)/2(A + (x/'-~b) -1) at the upper wall Y = A0. To satisfy the inequalities (3.7), it suffices to 
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require A 2 > (2a + 1)2(aB0) -1. If A > 0, we have k > Umax = u2 and the simple wave faces to the right, 
whereas if A < 0, we have k < Umin = Ul and the wave faces to the left. For/3  = 1/3, relation (3.9) is 
integrated in quadratures: U = A .+ 2(a - b ) ( A o v / ~ ) - l Y  + ( a v ~ )  -1. 

The case D = 0 (A2B0 = 8) corresponds to a shear-free flow: u = (x/T-Z-~)-I(A + (v/-B~c~) -1) and 
v = 0. The contact surfaces in this case are rectilinear: Y ( A , p )  = const = Y(A, p0). 

Figure 1 shows the horizontal-velocity profile for/3 = 2/3,  A = 5, and B0 = 3. Formula (3.9) defines 
Y/Ao  as a function of (u - Ul)/(u2 - ul) .  Figure 2 illustrates the diagrams of Y / A o  versus (u - ux)/(u2 - Ul) 
for [A[ = 5, ]3o = 3, and ~ = 1/3, 1/5, and 2/3 (curves 1-3, respectively). Vertical straight line 4 corresponds 
to a shearless flow (A2B0 = 8). 

In the case of a centered simple wave where k = z / t ,  from (3.1) and (3.7) we obtain the pressure profile 

in a simple wave p(z , t )  = ((1 - /3 )A-2) (x -~) - l (x / t )2 (1 -# ) - l .  The diagram of the pressure distribution for 
= 2/3 and A = 5 is shown in Fig. 3. 

As a result, it has been shown that a simple wave can be adjacent, in its characteristic, to any shear 
flow and it is either a compression or rarefaction wave, depending on the monotonicity properties of the 
function k(p). In a medium with constant entropy, a simple rarefaction wave exists for all t > 0, and the 
compression wave decays. A class of exact solutions of a system of long-wave equations that describe simple 
waves propagating in a barotropic gas with velocity k has been found. 
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